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Because of their importance in medicinal chemistry and in Scheme 1. Stepwise C2-C5-C4 Thiazole Arylation?
materials sciendemethods for the derivatization of heterocyclic
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aromatics such as palladium-catalyzed cross-coupling reactions find HIS—H StepA _ _StepB_ _StepC. D”"m—"m"'” Ar | N\>_N‘
broad academic and industrial is&Recently, processes capable oS Al ArfBr AFBr S

of forming similar products while avoiding the use of stoichiometric .

organometallic reagents, such as direct arylation, are emerging as Aryt Halides: \ Mo

attractive alternatives. /:;\ @ \C\
An underlying challenge associated with direct arylation is that, He % . .

in the absence of preactivating groups, the reactivity is governed fHs He
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by the inherent properties of the heterocycle itself. In nonideal cases, Q@
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very forcing reaction conditions. Methods to manipulate the
reactivity of heterocyclic substrates are thus invaluable, especially .

i i ivi i i Step A: 84% Step A 60% Step A T6%
|f_new or |mproved re_actlvny/r_eglocontro! can be achlevg_d. Azole Step pca% Step b SeppTon
direct arylation reactions, which are believed to be facilitated by Step C: 50% Step C:64% Step C: 84%

e . - . . De. jon, T2% Deo; fomr 66% De fom 64%
azolesz-nucleophilicity at C5 and €H acidity at C2, are illustrative. 0““3_'9_"3"0" x'fgemm . °’,‘y genatiom 64
aConditions: Step A: Arl, thiazole N-oxide (1.1 equiv), Pd(OAg)(5

In most cases, arylation .at C§ is preferFeajth.ough the formation mol %), ligand1 (10 mol %), CsCOs (1.5 equiv), PvOH (20 mol %),

of C5/C2 double arylation side products is commonpfa&2 CuBr (10 mol %), PhMe (0.2 M), 25C; Step B: ArBr, thiazoleN-oxide

arylation has been achieved through the use of copper additives(1.5 equiv), Pd(OAg)(5 mol %),'BusPHBF, (5 mol %), K.COs (1.5 equiv),

with palladium catalysigbut a broadly applicable process remains PhMe (2-2 M), 70°C; StepOCiAan thiazoleN-oxide (1.1 equiv), Pd(OAg)

to be identified. Typically, very high reaction temperatures are (@ M0l %). PPg (15 mol %), KCOs (2 equiv), PhMe, (0.2 M), 110C;
. . LT . . Deoxygenation:thiazoleN-oxide, zinc powder, N&Clq, THF. Reported

required, and a hl_gh yle_ldln_g C4 arylation h_as not bgen_dgscrlbed.yiems are isolated.

We have been investigating the use of azine and didt¢iogide _ _ '
substrates as alternatives to problematic organometallic reagentsScheme 2. HOMO for Thiazole and Thiazole N-Oxide Substrates?

in biaryl synthesi$. These substrates have proven useful in other 200 S ss @\{E 53,
nickeP and coppef catalyzed processes as well. Herein, we 2:;{] 21'°j(ﬁ—?aé *N_T
demonstrate that thi¥-oxide group not only imparts a dramatic ' wsg T -

0.6

increase in reactivity in direct arylation at all positions of the azole ‘ . > e
ring but also changes the weak azole bias forC82 arylation to " ‘ ' "vé
areliable C2> C5 > C4 reactivity profile (Scheme 1). This permits < <N "
high yielding, regioselective, and room temperature arylation at C2, .
high yielding arylation at C5, and the first examples of arylation at 2 Numbers represent % atomic contributions to the HOMO. C-H bonds
C4—providing a unique opportunity for exhaustive functionalization &re drawn at the site of direct arylation.

of the azole core. A correlation of reactivity with relative HOMO

populations at the different carbon atoms is observed and discussedaCs arylation when reacted with Pd(OAdB mol %), 'BusPHBF,

(Scheme 2). (5 mol %), and KCO;s (1.5 equiv) in toluene at 78C. Interestingly,

The thiazoleN-oxides were easily prepared by treatment with the addition of pivalic acid to C5 arylation reactions reduces the
mMCPBA or with HO, in the presence of catalytic MeRe® C5:C4 selectivity compared to a reaction performed in its absence.
Preliminary investigations on the direct arylation of thiazdlexide We were also pleased to find that tieoxide moiety will also

revealed a strong bias for reaction at C2. Further optimizations leadenable C4 arylation, the first time that such reactivity has been
to the establishment of high yielding C2 direct arylations under obtained. Optimal conditions for C4 arylation were determined to
very mild conditions (Scheme 3). For example, treatment of an involve the use of Pd(OAg)(5 mol %) in the presence of PPh
aryl halide with 1.1 equiv of a thiazold-oxide in the presence (15 mol %) and 2 equiv of BCOs in toluene at 110C. The breadth

of Pd(OAc) (5 mol %), 2-(diphenylphosphino-2ZN,N-dimethyl- of products that are readily accessible are illustrated in Scheme 3.
amino)biphenyll (10 mol %), acid? (20 mol %), and KCOs (1.5 This chemistry has also been validated in a stepwise, exhaustive
equiv) in toluene at 28C results in C2 arylation as the exclusive arylation of the thiazole core which is highly divergent and may
product (Schemes 1 and B)These are rare examples of direct find application in a diversity oriented evaluation of the biological
arylation occurring under such mild conditioHdf the C2 position and physical properties of these types of molecule (Scheme 1). An
is blocked, the thiazolBl-oxide can then undergo a highly selective initial evaluation with imidazolé-oxides has also been performed
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Scheme 3. Direct Arylation of Thiazole N-Oxides?
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aConditions: C2 arylation: ArBr, (1 equiv), thiazoleN-oxide (1.1
equiv), Pd(OAc) (5 mol %), ligand1l (10 mol %), KCOs (1.5 equiv),
PivOH (20 mol %) in PhMe (0.2 M) at 28C; C5 arylation: ArBr, (1
equiv), thiazoleN-oxide (1.5 equiv), Pd(OAeg)(5 mol %), BusPHBF; (5
mol %), KxCOs (1.5 equiv) in PhMe (0.2 M) at 78C; C4 arylation: ArBr,
(1 equiv), thiazoleN-oxide (1.1 equiv), Pd(OAg)(5 mol %), PPh (15
mol %), K2COs (2 equiv) in PhMe (0.2 M) at 116C. PUsing DavePhos
(10 mol %) at 70°C. cUsing 2-(dicyclohexyl-phosphino)biphenyl (10 mol
%). 9Using DavePhos (10 mol %Using the aryl iodide (1 equiv), G803
(1.5 equiv) as base, and CuBr additive (10 mol %Jsing CuBr as an
additive (10 mol %)9Using the aryl iodide (1 equiv) and &30; (2 equiv).

91%9
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(egs 1 and 2). Once arylation has been achievedytheide moiety
may be easily deoxygenated (Scheme 1 and the Supporting
Information).

The influence of theN-oxide fragment on the reactivity of the
thiazole core was evaluated by molecular orbital analysis (Scheme

2).15 Sincez-nucleophilicity may contribute to reactivity and site
selectivity, the relative contribution of each carbon atom to the
HOMO is informative. The nearly equal distribution at all three
carbons of thiazole (25.2, 29.9, 30.5%) correlates well with the
challenges associated with C5/C2 regioselectivity for that substrate.
In stark contrast, the HOMO of thiazol-oxide is localized at C2
and has very small density at C4 and C5306 contribution at
each). This maps well onto the high C2 selectivity and the mild
reaction conditions. Furthermore, the larger density at C5 of
2-phenylthiazoleN-oxide corresponds well to the subsequent
preference for reaction at C5. This reactivity should have a broader
impact not only in direct arylation but also in the growing number
of metal-catalyzed heterocycle transformations that could make use
of the N-oxide activation strategy in the rapid functionalization of
these substrates.
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